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Glutamic acid is the main excitatory amino acid in the central
nervous system. The design of ligands for the various types of
glutamate receptors as potential therapeutic agents has attracted the
attention of numerous groups.1 4-Substituted glutamate analogues,
such as 4-substituted alkylidene glutamic acids, have been the
targets of several synthetic and pharmacological studies.2

The enantioselective synthesis ofR-amino acid derivatives
employing chiral phase-transfer catalysts (PTC) represents an
important synthetic advancement.3 Enantioselective reactions of the
Schiff bases of amino esters, using PTC conditions catalyzed by
quaternizedCinchonaalkaloids by O’Donnell,4 Corey,5 Lygo,6 and
related systems by others,7 have been used to obtain a variety of
amino acid products with impressive levels of enantioselection using
simple procedures. However, to the best of our knowledge, there
have been no reports on the tandem conjugate addition-elimina-
tion8,9 under phase-transfer conditions for the enantioselective
preparation of amino acids.10 Herein we report a new, general, and
practical method for the preparation of 4-alkylidenyl glutamic acids
via tandem conjugate addition-elimination under PTC.

Targets for initial studies, which focused on standardizing the
reaction conditions and determining the scope of the methodology,
were the racemic glutamate derivatives3 (Scheme 1).

Reaction of the lithium enolate of the benzophenone imine of
glycine tert-butyl ester (1) with allylic acetates2, prepared via
vinylalumination11 or Baylis-Hillman reaction,9 in THF at -78
°C for 1.5-4.5 h, gave the racemic products3.12 A variety of types
of allylic acetates, including aromatic, aliphatic, heterocyclic, and
fluoroaromatic, smoothly undergo the tandem conjugate addition-
elimination (see Supporting Information). It is noteworthy that, with
allylic acetates that are not activated with an ester group at the
2-position, palladium catalysis is required in similar reactions.13

We then investigated the enantioselective version of the tandem
conjugate addition-elimination to prepare optically active 4-alkyl-
idenyl glutamates3 using chiral PTC. Catalysts derived from the
Cinchonaalkaloids were chosen because of their demonstrated
applicability in phase-transfer catalysis and their facile preparation
from inexpensive and available sources.3-6 The reaction of1 with

2a usingO-allyl-N-(9-anthracenylmethyl)cinchonidinium bromide
(4a) as the PTC (CsOH‚H2O, CH2Cl2, -78 °C) gave the model
product (S)-3a in 92% yield and 92% ee (Table 1 and Figure 1).

Use of homogeneous reaction conditions (catalyst4a, Schwesing-
er base BEMP, CH2Cl2, -78 °C, 24 h)4c,d afforded (S)-3a in 90%
yield and 79% ee. Similarly, liquid-liquid PTC (4b, 50% KOH,
PhMe, 25°C, 24 h)6a also gave poorer results. Variation in the
N-alkyl group on the quinuclidine core of the quaternary ammonium
salt (4c-4e) also resulted in decreased yields and enantioselec-
tivities (Table 1). As expected from literature reports, the anthra-
cenylmethyl-derived catalyst (4a) gave the best enantioselectivity
(92% ee) and yield.N-Benzyl cinchonidinium bromide (4e) was
the least effective catalyst of those studied (84% ee), while the 2-
and 1-naphthylmethyl-derived catalysts (4c and4d, respectively)
gave intermediate results.

A number of optically active 4-alkylidene glutamates were
prepared using the optimized conditions developed for the model
phenyl-substituted product3a using 4a as the PTC (Table 2).
Product3b, derived from the electron-poor allylic acetate2b, gave
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Scheme 1. Synthesis of the 4-Alkylidenyl Glutamic Acid
Derivatives

Table 1. Enantioselective Alkylation of the Benzophenone Imine
of Glycine tert-Butyl Ester Using Various Phase-Transfer
Catalystsa

entry catalyst temp, °C time, h yield, %b ee, %c

1 4a -78 30 92 92
2 4b 25 24 72 60
3 4c -78 36 78 86
4 4d -78 36 82 85
5 4e -78 36 78 84

a The reaction was conducted with the benzophenone imine of glycine
tert-butyl ester1 (1 mmol), allylic acetate2 (1 mmol), CsOH‚H2O (10
equiv), and PTC (10 mol %) in CH2Cl2 for the given time.b Isolated yield.
c The enantiopurity of model product (S)-3awas determined by chiral HPLC
analysis of the product using a (S,S)-Whelk-O1 column (Regis Technologies)
with hexane:2-propanol as the solvent system; the resolution of the
enantiomers was confirmed by analysis of racemic glutamate (3a); see
Supporting Information.

Figure 1. Structure of the phase-transfer catalysts.
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the highest enantioselectivity (97% ee, entry 2), while the deacti-
vated electron-rich allylic acetate2c gave a lower % ee of product
3c (89% ee, entry 3). In the case of heterocyclic, fluoroaromatic,
and aliphatic allylic acetates, slightly lower enantioselectivities (80-
86%) were obtained.

The structure of product3d, including the E-double bond
geometry, was elucidated by spectroscopic and X-ray crystal-
lographic techniques (Figure 2). The absolute configuration (2S)
of the stereogenic center resulting from the enantioselective
alkylation was assigned by analogy with earlier studies, which have
shown that 2Sproducts result when cinchonidine-derived catalysts
are used in the PTC alkylation.3-6,7f This assignment was confirmed
by conversion of (S)-3d to the known 4-oxo glutamic acid via the
dihydroxylation-periodate cleavage of the double bond, followed
by hydrolysis14 (see Supporting Information).

The utility of this process was demonstrated by transforming a
representative 4-alkylidene glutamate (S)-3a into 4-oxo glutamates
and 4-substituted pyroglutamates (Scheme 2), which can be readily
converted to 4-substituted glutamic acids15 (see Supporting Infor-
mation).

In conclusion, we have presented a new, general, and practical
procedure for the asymmetric synthesis of 4-alkylidenyl glutamic

acid derivatives, which is based on the catalytic enantioselective
tandem conjugate addition-elimination of the Schiff base of glycine
tert-butyl ester with activated allylic acetates under phase-transfer
conditions. The simple procedure and high enantioselectivity of the
process offer a practical route to these important targets.
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Table 2. Enantioselective Synthesis of 4-Alkylidenyl Glutamic Acid
Derivatives under Phase-Transfer Conditionsa

entry
allyl

acetate R time, h
glutamic acid

derivative yield, %b ee, %c

1 2a Ph 30 (S)-3a 92 92
2 2b 4-NO2-Ph 48 (S)-3b 72 97
3 2c 4-MeO-Ph 48 (S)-3c 63 89
4 2d 2-thienyl 48 (S)-3d 90 86
5 2e 2-pyridinyl 34 (S)-3e 72 82
6 2f 2,6-F2Ph 48 (S)-3f 68 80
7 2g nPr 34 (S)-3g 82 82
8 2h tBu 40 (S)-3h 63 85

a The reaction was conducted with the benzophenone imine of glycine
tert-butyl ester1 (1 mmol), allylic acetate2 (1 mmol), CsOH‚H2O (10
equiv), and4a (10 mol %) in CH2Cl2 for the given time.b Isolated yield.
c Enantiopurities of the products (S)-3 were determined by chiral HPLC
analysis of the product using a (S,S)-Whelk-O1 column (Regis Technologies)
with hexane:2-propanol as the solvent system; in each case, the resolution
of the enantiomers was confirmed by analysis of racemic glutamates (3);
see Supporting Information.

Figure 2. X-ray crystal structure of glutamate product (S)-3d.

Scheme 2. Synthesis of 4-Substituted Pyroglutamates
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